報告時(shí)間:2018年10月29日(周一)9:00
報告地點(diǎn):東校區信息館401
報告題目:《Real-worldNeuroimaging: an Intersection of Neuroscience, Neurotechnologies, and MachineLearning》
報告人:鐘子平
報告人簡(jiǎn)介:鐘子平,美籍華人,加州大學(xué)圣地亞哥分校(UCSD)教授,Swartz計算神經(jīng)科學(xué)中心副主任,UCSD先進(jìn)神經(jīng)工程中心副主任,臺灣國立交通大學(xué)等高校兼職教授,IEEE Fellow。研究方向主攻計算神經(jīng)科學(xué)、腦機接口、機器學(xué)習。其建立了應用盲源分離以分解多通道EEG/MEG/ERP和fMRI數據的變革技術(shù),諸多研究成果曾在SCIENCE、PNAS、PROCEEDINGS OF THE IEEE等多家國際頂級期刊發(fā)表,發(fā)表論文GOOGLE引用次數總和達22700次,H因子高達59。
報告內容簡(jiǎn)介:The past twenty years havewitnessed remarkable advances in neuroscience and neurotechnologies. However,nearly all the neuroscience research studies were conducted in well-controlledlaboratory settings. It has been argued that fundamental differences betweenlaboratory-based and naturalistic human behavior may exist. It remains unclearhow well the current knowledge of human brain function translates into thehighly dynamic real world (McDowell, 2014). Therefore, there is a need to studythe brain in ecologically valid environments to truly understand how the humanbrain functions to optimally control behavior in face of ever-changing physicaland cognitive circumstances.To this end, we have developed and validated transformative techniquesand tools to collect laboratory-grade neural, physiological, and behavioraldatafrom unconstrained, freely movingsubjects in everyday environments. We have alsodeveloped and applied state-of-the-artmachine-learning algorithms to find statistical relationships among thevariations in environmental, behavioral, and functional brain dynamics.Thistalk will focus on the development of tools for real-world neuroimagingresearch and the results of sample neurocognitive studies.
本報告適合于對計算神經(jīng)科學(xué)與信息處理感興趣的計算機、電子、控制、生物醫學(xué)工程等專(zhuān)業(yè)的教師和學(xué)生,歡迎廣大師生參加!
信息科學(xué)與工程學(xué)院
2018年10月26日