報告時(shí)間:2017年12月29日(周五)10:30
報告地點(diǎn):西校區理學(xué)樓404會(huì )議室
報告題目:On non-asymptotic integer order and fractional order differentiators
報告人:劉大研
報告人簡(jiǎn)介:劉大研分別于2005年和2007年獲得法國里爾一大學(xué)士和碩士學(xué)位,并于2011年獲得里爾一大應用數學(xué)博士學(xué)位。在法國國立高等工程技術(shù)學(xué)校和沙特阿拉伯國王阿卜杜拉科技大學(xué)完成博士后工作后,他于2013年獲得法國中部盧瓦爾河谷國立應用科學(xué)學(xué)院副教授永久職位,并任職法國中部大區PRISME實(shí)驗室控制組。劉博士的主要研究興趣在于整數階和分數階系統的辨識和估計。到目前為止,他已經(jīng)在國際期刊和會(huì )議上發(fā)表40多篇論文,例如IEEE Transactions on Automatic Control, Automatica, SIAM Journal of Scientific Computing, Systems & Control Letters等。2012年他獲得了中國政府頒發(fā)的海外優(yōu)秀自費留學(xué)生獎。自2017年10月起,他被任命為國際自動(dòng)控制聯(lián)盟《線(xiàn)性控制系統》技術(shù)委員會(huì )成員。
報告內容簡(jiǎn)介:For cost and technological reasons, there always exist some variables and parameters which cannot be measured. Moreover, the measurements usually contain noises. Sometime, fast estimations with convergence in finite-time are required in on-line applications. For these reasons, the modulating functions method introduced by Shinbrot in 1954 and the algebraic parametric estimation method introduced by Fliess and Sira-Ramirez in 2003 both originally for system identification have been applied and extended in signal processing and automatic control, such as parameter estimation and numerical differentiation, etc. The two methods have the following advantages. Firstly, the obtained estimators are exactly given by integral formulae of the observation signal. Thus, they are algebraic and non-asymptotic. Fast estimation can be provided using sliding integration window with finite length. The knowledge of initial conditions is not needed and the derivatives of noisy signals don't need to be calculated. Moreover, thanks to the integrals in the formulae, they are robust with respect to corrupting noises without the need of knowing in priori their statistical properties. In this talk, the ideas of these two methods will be explained. Moreover, it will be shown how to apply these methods to design integer order and fractional order differentiators.
歡迎全校師生參加!
理學(xué)院 國際合作處
2017年12月26日